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Why RL



Go

Strategy board game where two players try to 
surround opponents pieces. 

Likely the world's oldest board game, is thought to 
have originated in China 4,000 years ago. [1]

Attempts to solve Go! 

● Many attempts to solve, but unsuccessful. 
● Number of configurations of board - 10^170 - 

“more than number of atoms in the universe” - 
Alpha GO ( chess - ~10^50 possible positions)

Image, 1] https://www.britannica.com/topic/go-game 

https://en.wikipedia.org/wiki/File:FloorGoban.JPG


AlphaGo - Deep RL Based Computer Program Plays Go

MCTS (Monte Carlo Tree 
Search)

Database of Expert Knowledge 
(~30 million moves) + Self-Play

RL Problem

Mastering the game of Go with deep neural networks and tree search



AlphaGo - 2016 - Beat World Champion 

"I thought AlphaGo was based on probability 
calculation and that it was merely a machine. But 
when I saw this move, I changed my mind. Surely, 
AlphaGo is creative."

- Lee Sedol - Winner of 18 world Go titles



AlphaZero - Learn from Self-Play (No Human Knowledge)

AlphaZero

No Database of Expert 
Knowledge 

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go


MuZero - Mastering Go, chess, shogi and Atari without 
rules

MuZero

Dynamics/Rules of the Game.

Real world settings - the rules 
or dynamics are typically 
unknown and complex.

https://deepmind.com/blog/article/muzero-mastering-go-chess-shogi-and-atari-without-rules


Beyond Games



MuZero - YouTube to optimise video compression

MuZero Youtube

https://deepmind.com/blog/article/MuZeros-first-step-from-research-into-the-real-world


RL at InstaDeep

Pack items more 
efficiently to improve 
supply chain logistics

Save money on transport costs for 
large shipments

Design complex printed 
circuit boards in less than 

24 Hours

Accelerates the product cycle in IOT 
and consumer electronics

DeepPackTM 
(Logistics/Supply Chain)

 DeepPCBTM 

 (Hardware/IOT)

DeepRailTM

(Fleet Management)

Optimize train scheduling 
and mobility fleet 

management
Reduces passenger delays, better yields on 

infrastructure projects



RL Flow and Intuition



Practical Setting - Robot Playing Football 



Reinforcement Learning (RL) Loop

Environment: 

● The system we care about - returns our 
reward signal.

● What our “agent” sees and interacts with. 



Reinforcement Learning (RL) Loop

Agent: 

● Interacts with the environment.
● Entity that makes decisions, adapts 

and learns. 



Reinforcement Learning (RL) Loop
 

Take action from available actions. 

Receive state from possible states.

Receive reward.



Reinforcement Learning (RL) Loop
 

GOAL: +1



Reinforcement Learning (RL) Loop
 

GOAL: +1
GOAL: -1



Reinforcement Learning (RL) Loop

… 

GOAL: +1
 GOAL: -1

GOAL: +1



● SL - One-shot
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RL compared to Supervised Learning (SL) - Decisions

● RL - Sequential 

Cat
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RL compared to Supervised Learning - Training

● SL - Learn from labelled examples. 

Training Dataset.
Labelled examples.



● Learn from interacting with an environment. 
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RL compared to Supervised Learning - Training - Trial and Error

Environment/Simulator
- Reward signal. 
- Possible states and actions.
- Rules or dynamics of the 

environment. 



● SL - Performance on Test Set 
(e.g. Test Accuracy/Loss).
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RL compared to Supervised Learning - Objectives

Train Data

Test Data

● RL - Maximize Cumulative 
Reward (Return).

Score at the End
100:0

e.g. test accuracy 78%. e.g. return is 100 (scored 100 goals in a match) 
or mean episode return is 50 (played two 
games - game 1 scored 75, game 2 scored 25).



RL is goal-directed learning from interaction (trial and error).
Learn - what to do (how to map situations to actions, as to 

maximize a numerical reward).

RL agent-environment interaction loop

Reinforcement Learning (RL)



RL Formalism
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Markov Decision Process (MDP)
 

MDPs: Formal way to describe an RL environment (or any sequential 
decision-making systems).

Markov Property: Transitions only depend on the most recent state and action, 
and no prior history (current state contains all necessary information). 

Probability of next state given current state = Probability of next state given whole history

“|” - Given
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Markov Property

Chess - Markovian.

Which direction is the ball going?Do we need history for Chess?

Atari Breakout - Not Markovian.
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Markov Decision Process (MDP)



29

S - state space - is a finite set of states.

s ∈ S , full description/representation of the environment 
at a particular time (discrete or continuous).

x 0 0 0

0 B B 0

… … … …

0 0 0 T

e.g. 

where x - agent, T - terminal, B - blocked, 0 - open space. 

Markov Decision Process (MDP)
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A - action space - is a finite set of actions.

a ∈ A , what our agent does (discrete or 
continuous). 

e.g. 
#     1. LEFT= 0
#     2. DOWN = 1
#     3. RIGHT = 2
#     4. UP = 3

Markov Decision Process (MDP)
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T - transition probability.

Deterministic

If you decide to go left you'll go left.

Stochastic 

Probability distribution over transitions e.g. if you 
decide to go left, you will go left 50% of the time, stay 
in your location 50% of the time. 

Markov Decision Process (MDP)
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⃜⃜

d0 - distribution of initial states - do 
you always start in the same place? 

Markov Decision Process (MDP)
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r - reward function - how good our 
current state/action was.

Markov Decision Process (MDP)

r(    ,  )    
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𝛾  ∈ [0,1] is a discount factor, that 
penalise rewards in the future.

Markov Decision Process (MDP)



Policy: Mapping from states to actions. 

Policy - Agents - What to Do

Deterministic:  Stochastic: 

In Deep RL - policies are parameterized by the weights of Neural Network 𝛩:
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Trajectory

Markov Decision Process (MDP)
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Trajectory

Trajectory distribution

Markov Decision Process (MDP)
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Trajectory

Trajectory distribution

Markov Decision Process (MDP)

Policy

Probability of a specific trajectory.

Product notation.
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Return vs Reward

Reward - how good our current state/action is.

Return - expected cumulative reward over time. 



40

RL Objective

Trajectory sampled from trajectory 
distribution according to policy. 

Return (reward over time) following these 
trajectories.

Maximise the total expected return per episode.
E.g. football - score most goals in a match or over many matches. 

Sum of rewards weighted by their probability.
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How our agents learns - Value

Value: What is good in the long run.

Value of state(s) /state-action (s,a):  How good is the s or s,a pair, i.e. the expected 
return (G_t) if you start at s or s,a and then act according to your policy.

State-value function:

Action-value (Q) function:

Efficiently estimating values is critical to RL.

(         ,         )



Kinds of RL Algorithms (Model-free)

Value-Based Methods Policy-Based Methods Actor-Critic Methods

L
E
A
R
N

A
C
T

Actor

Critic

E.
G. DQN. Reinforce. A2C/A3C, DDPG, 

PPO, etc.
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Dynamic Programming - Bellman Equation

Value functions can be split into 2 parts:

Immediate Reward. Discounted value of next state.
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Dynamic Programming

Bellman Operator
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Policy Iteration

States

A
ct

io
ns
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Policy Iteration

Policy Evaluation (Prediction)

States

A
ct

io
ns
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Policy Iteration

Policy Evaluation (Prediction) Policy Improvement (Control)

States

A
ct

io
ns
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Policy Iteration

Policy Evaluation (Prediction) Policy Improvement (Control)

States

A
ct

io
ns
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Policy Iteration

Policy Evaluation (Prediction) Policy Improvement (Control)

States

A
ct

io
ns

Sutton and Barto, 2018.
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Value Iteration 

Bellman Optimality Equation
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Value Iteration

Bellman Optimality Equation
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Value Iteration

Bellman Optimality Equation

Need a model
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Value Iteration

Bellman Optimality Equation



54

Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Incrementally estimate 
using samples
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Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Incrementally estimate 
using samples
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Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Incrementally estimate 
using samples
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Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Incrementally estimate 
using samples

TD Error
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Q-Learning (Off-policy TD Learning)

Update the value estimates in part based on other estimates: “Learning a guess 
from a guess”.

TD Error

Old Estimate. Old Estimate.Target

Step Size.
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Q-Learning (Off-policy TD Learning)

Link

https://stackoverflow.com/questions/56777123/questions-about-deep-q-learning
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Q-Learning (Off-policy TD Learning)

Link

https://stackoverflow.com/questions/56777123/questions-about-deep-q-learning
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Q-learning in large state spaces?

Tabular RL does not scale to large complex problems:
● Too many states to store in memory
● Too slow to update and estimate values for each state

Need to use an approach able to generalise across many states



Approx. Dynamic Programming 
using function approximation
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The goal of function approximation

Approximate the values of states using a parameterised function 
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The goal of function approximation

Approximate the values of states using a parameterised function 
● Input: state features
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The goal of function approximation

Approximate the values of states using a parameterised function 
● Input: state features
● Output: estimated Q-values
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The goal of function approximation

Approximate the values of states using a parameterised function 
● Input: state features
● Output: estimated Q-values
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The goal of function approximation

Approximate the values of states using a parameterised function 
● Input: state features
● Output: estimated Q-values
● Target: reward to go
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Approximate Dynamic Programming



69

Approximate Dynamic Programming
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Approximate Dynamic Programming

Typically a deep 
neural network
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Approximate Dynamic Programming

Typically a deep 
neural network

Why?
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Approximate Dynamic Programming

Typically a deep 
neural network

Why?

● Known to discover useful features
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Approximate Dynamic Programming

Typically a deep 
neural network

Why?

● Known to discover useful features
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Approximate Dynamic Programming

Typically a deep 
neural network

Why?

● Known to discover useful features

● Wealth of research in DL that can be 
directly be applied to RL
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Approximate Dynamic Programming

Typically a deep 
neural network



76

Approximate Dynamic Programming
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Approximate Dynamic Programming

Controls policy 
improvement step
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Approximate Dynamic Programming

Controls policy 
evaluation step
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Approximate Dynamic Programming
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Approximate Dynamic Programming
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Approximate Dynamic Programming

Prediction Target
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Approximate Dynamic Programming

Prediction Target

Target network 
note parameters do 

not depend on g



83

Approximate Dynamic Programming

Prediction Target
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Approximate Dynamic Programming

Prediction Target
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Approximate Dynamic Programming

Prediction Target

TD Error
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Approximate Dynamic Programming

Prediction Target

TD Error
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Approximate Dynamic Programming

Prediction Target

TD Error

Squared-error loss as in supervised learning
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Approximate Dynamic Programming

Prediction Target

TD Error

Squared-error loss as in supervised learning
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Approximate Dynamic Programming

Prediction Target

TD Error

Squared-error loss as in supervised learning

Sum over 
transition data
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Approximate Dynamic Programming
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Approximate Dynamic Programming



92

Approximate Dynamic Programming

Update the parameters using gradient descent
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Approximate Dynamic Programming

Update the parameters using gradient descent
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Approximate Dynamic Programming

Update the parameters using gradient descent
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Approximate Dynamic Programming
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Approximate Dynamic Programming
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Approximate Dynamic Programming

Approximate 
Policy Evaluation
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Approximate Dynamic Programming

Approximate 
Policy Evaluation
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Approximate Dynamic Programming

Approximate 
Policy Evaluation

Act (𝜀) greedy with 
respect to new 

parameters
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Approximate Dynamic Programming

Approximate 
Policy Evaluation

Approximate 
Policy ImprovementAct (𝜀) greedy with 

respect to new 
parameters
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Approximate Dynamic Programming

Act (𝜀) greedy with 
respect to new 

parameters

Approximate 
Generalised Policy 

Iteration
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Generic Q-learning algorithm
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Generic Q-learning algorithm
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Generic Q-learning algorithm
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Generic Q-learning algorithm
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Generic Q-learning algorithm
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Generic Q-learning algorithm
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Generic Q-learning algorithm
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Generic Q-learning algorithm
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Generic Q-learning algorithm
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Generic Q-learning algorithm
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Generic Q-learning algorithm
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Generic Q-learning algorithm
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Generic Q-learning algorithm
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Generic Q-learning algorithm



116

Generic Q-learning algorithm
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Generic Q-learning algorithm
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Generic Q-learning algorithm
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Generic Q-learning algorithm



Deep Q-Networks 
as special case of generic Q-learning
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Deep Q-Networks



Stability Issues with Deep Q-Networks 

Human-level control through deep reinforcement learning, V. Mnih et al, nature 2015

Naive Q-Learning oscillates or diverges with neural 
networks:

❏ Data is sequential:
Successive sample are correlated, non-iid.

❏ Policy changes rapidly with slight changes to 
Q-values

❏ Scale of rewards and Q-values is unknown
Naive Q-learning gradients can be large and unstable when 
backpropagated.

❏ Exploration is greedy

DQN provides a stable solution to deep 
value-based RL:

❏ Use experience replay
Break correlations in data, bring us back to iid setting
Learn from all past policies

❏ Freeze target Q-network
Avoid oscillations
Break correlations between Q-network and target

❏ Clip rewards or normalize network adaptively 
to sensible range
Robust gradients

❏ Use Epsilon Greedy Exploration
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Special cases of the generic Q-learning algorithm

Classic Q-learning (Watkins and Dayan, 1992)
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Special cases of the generic Q-learning algorithm

Classic Q-learning (Watkins and Dayan, 1992)

Fitted Q-iteration (Ernst et al., 2005, Riedmiller et al., 2005)

(until convergence)
(sampling size is a hyperparameter)
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Special cases of the generic Q-learning algorithm

Classic Q-learning (Watkins and Dayan, 1992)

Fitted Q-iteration (Ernst et al., 2005, Riedmiller et al., 2005)

(until convergence)
(sampling size is a hyperparameter)

Deep Q-Networks (Mnih et al., 2013)
, , (all hyperparameters)

Collect transitions and run gradient steps concurrently
Sample random batches from experience replay          decorrelate transitions
Lagging update of target network           fix target network to stabilise learning
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Deep Q-Networks results

http://www.youtube.com/watch?v=TmPfTpjtdgg


Next steps?
Deep RL Prac 

© Copyright 2023 InstaDeep.com. All Rights Reserved.

Other excellent sources:

● Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto
● OpenAI Spinning Up
● David Silver UCL Course

https://github.com/deep-learning-indaba/indaba-pracs-2022/blob/main/practicals/introduction_to_reinforcement_learning.ipynb
http://incompleteideas.net/book/the-book-2nd.html
https://spinningup.openai.com/en/latest/
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ&ab_channel=GoogleDeepMind


Questions?


